By Titu Andreescu

ISBN-10: 9739328881

ISBN-13: 9789739328883

This problem-solving ebook is an advent to the learn of Diophantine equations, a category of equations during which simply integer recommendations are allowed. The presentation positive factors a few classical Diophantine equations, together with linear, Pythagorean, and a few greater measure equations, in addition to exponential Diophantine equations. a few of the chosen routines and difficulties are unique or are awarded with unique options. An advent to Diophantine Equations: A Problem-Based technique is meant for undergraduates, complicated highschool scholars and lecturers, mathematical contest contributors ― together with Olympiad and Putnam rivals ― in addition to readers drawn to crucial arithmetic. The paintings uniquely offers unconventional and non-routine examples, rules, and strategies.

Show description

Read Online or Download An Introduction to Diophantine Equations PDF

Best number theory books

A Course In Algebraic Number Theory

It is a textual content for a simple direction in algebraic quantity conception.

Reciprocity Laws: From Euler to Eisenstein

This booklet is set the improvement of reciprocity legislation, ranging from conjectures of Euler and discussing the contributions of Legendre, Gauss, Dirichlet, Jacobi, and Eisenstein. Readers an expert in easy algebraic quantity idea and Galois conception will locate specific discussions of the reciprocity legislation for quadratic, cubic, quartic, sextic and octic residues, rational reciprocity legislation, and Eisenstein's reciprocity legislation.

Einführung in die Wahrscheinlichkeitstheorie und Statistik

Dieses Buch wendet sich an alle, die - ausgestattet mit Grundkenntnissen der Differential- und Intergralrechnung und der linearen Algebra - in die Ideenwelt der Stochastik eindringen möchten. Stochastik ist die Mathematik des Zufalls. Sie ist von größter Bedeutung für die Berufspraxis der Mathematiker.

Einführung in Algebra und Zahlentheorie

Das Buch bietet eine neue Stoffzusammenstellung, die elementare Themen aus der Algebra und der Zahlentheorie verknüpft und für die Verwendung in Bachelorstudiengängen und modularisierten Lehramtsstudiengängen konzipiert ist. Es führt die abstrakten Konzepte der Algebra in stetem Kontakt mit konkreten Problemen der elementaren Zahlentheorie und mit Blick auf Anwendungen ein und bietet Ausblicke auf fortgeschrittene Themen.

Extra info for An Introduction to Diophantine Equations

Example text

Mathematical Induction (with step s): Lets be a fixed positive integer. Suppose that: • P{no), P(no + 1), ... , P(no + s- 1) are true; • For all k >no, P(k) is true implies P(k + s) is true. Then P(n) is true for all n >no. Mathematical Induction (strong form): Suppose that • P(no) is true; • For all k > n 0 , P(m) is true for all m with no < m < k implies P(k + 1) is true. Then P(n) is true for all n >no . This method of proof is widely used in various areas of Mathematics, including Number Theory.

This shows that if (x, y) is a solution, then so is (y- x, -x). The two solutions are distinct, since y - x =x and -x =y lead to x = y ·= 0. Similarly, x3 - 3x 2 y + 3xy 2 - y 3 + 2y 3 + 3x 2 y- 6xy 2 (x- y) 3 + 3xy(x- y)- 3xy2 + 2y 3 ( -y)3- 3( -y)(x - y)2 29 + (x- y)3' so (-y, x- y) is the third solution to the equation. We use these two transformations to solve the second part of the problem. Let (x, y) be a solution. Since 2891 is not divisible by 3, x3 y3 + is not divisible by 3, as well. So either both of x and y give the same residue modulo 3 (different from 0), or exactly one of x andy is divisible by 3.

Suppose that x = 2k, for some positive integer k. Fork> 4, we have Indeed, the left inequality is clear and the right one is equivalent to + 23 < 7k, 8k4 which can be justified by using mathematical induction. We need only consider k E {1, 2, 3}. Only k Thus x = 2 yields a solution. = 4, y = 52 is the unique solution. Example 4. Let M be the number of integral solutions to the equation x2 _ y2 = z3 _ t3 with the property 0 < x, y, z, t < 106 , and let N be the number of the integral solutions to the equation that have the same property.

Download PDF sample

An Introduction to Diophantine Equations by Titu Andreescu

by Robert

Rated 4.17 of 5 – based on 32 votes