By John H. Coates, Shing-Tung Yau (Editors)

ISBN-10: 1571460497

ISBN-13: 9781571460493

Complaints of a convention on the chinese language collage of Hong Kong, held in line with Andrew Wile's conjecture that each elliptic curve over Q is modular. The survey article describing Wile's paintings is incorporated because the first article within the current version.

Show description

Read or Download Elliptic Curves, Modular Forms and Fermat's Last Theorem (2nd Edition) PDF

Similar number theory books

A Course In Algebraic Number Theory

It is a textual content for a simple path in algebraic quantity idea.

Reciprocity Laws: From Euler to Eisenstein

This booklet is set the improvement of reciprocity legislation, ranging from conjectures of Euler and discussing the contributions of Legendre, Gauss, Dirichlet, Jacobi, and Eisenstein. Readers an expert in easy algebraic quantity thought and Galois thought will locate precise discussions of the reciprocity legislation for quadratic, cubic, quartic, sextic and octic residues, rational reciprocity legislation, and Eisenstein's reciprocity legislation.

Einführung in die Wahrscheinlichkeitstheorie und Statistik

Dieses Buch wendet sich an alle, die - ausgestattet mit Grundkenntnissen der Differential- und Intergralrechnung und der linearen Algebra - in die Ideenwelt der Stochastik eindringen möchten. Stochastik ist die Mathematik des Zufalls. Sie ist von größter Bedeutung für die Berufspraxis der Mathematiker.

Einführung in Algebra und Zahlentheorie

Das Buch bietet eine neue Stoffzusammenstellung, die elementare Themen aus der Algebra und der Zahlentheorie verknüpft und für die Verwendung in Bachelorstudiengängen und modularisierten Lehramtsstudiengängen konzipiert ist. Es führt die abstrakten Konzepte der Algebra in stetem Kontakt mit konkreten Problemen der elementaren Zahlentheorie und mit Blick auf Anwendungen ein und bietet Ausblicke auf fortgeschrittene Themen.

Additional info for Elliptic Curves, Modular Forms and Fermat's Last Theorem (2nd Edition)

Sample text

GROUPS AND GROUP ACTIONS 4. The cycle type of a permutation Suppose σ ∈ Sn . Now carry out the following steps. • Form the sequence 1 → σ(1) → σ 2 (1) → · · · → σ r1 −1 (1) → σ r1 (1) = 1 where σ k (j) = σ(σ k−1 (j)) and r1 is the smallest positive power for which this is true. • Take the smallest number k2 = 1, 2, . . , n for which k2 = σ t (1) for every t. Form the sequence k2 → σ(k2 ) → σ 2 (k2 ) → · · · → σ r2 −1 (k2 ) → σ r2 (k2 ) = k2 where r2 is the smallest positive power for which this is true.

GROUPS AND GROUP ACTIONS Then a symmetry is defined once we know where the vertices go, hence there are as many symmetries as permutations of the set {A, B, C}. Each symmetry can be described using permutation notation and we obtain the 6 symmetries ι= A B C , A B C A B C , B C A A B C , C A B A B C , A C B A B C C B A A B C . B A C Therefore we have | Sym( )| = 6. 16. Let S ⊆ R2 be the square B(−1, 1), C(−1, −1), D(1, −1). B centred at the origin O with vertices at A(1, 1), A ·O C D Then a symmetry is defined by sending A to any one of the 4 vertices then choosing how to send B to one of the 2 adjacent vertices.

Definition and examples of arithmetic functions Let Z+ = N0 −{0} be the set of positive integers. A function ψ : Z+ −→ R (or ψ : Z+ −→ C) is called a real (or complex) arithmetic function if ψ(1) = 1. There are many important and interesting examples. 1. The following are all real arithmetic functions: (a) The ‘identity’ function id : Z+ −→ R; id(n) = n. 24. (c) For each positive natural number r, σr : Z+ −→ R; dr . σr (n) = d|n σ1 is often denoted σ; σ(n) is equal to the sum of the (positive) divisors of n.

Download PDF sample

Elliptic Curves, Modular Forms and Fermat's Last Theorem (2nd Edition) by John H. Coates, Shing-Tung Yau (Editors)


by Brian
4.0

Rated 4.86 of 5 – based on 11 votes